Search results for "Dynamical symmetry breaking"

showing 3 items of 3 documents

Gluon mass generation in the massless bound-state formalism

2013

We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation its…

Nuclear and High Energy PhysicsRenormalizationBethe–Salpeter equationHigh Energy Physics::LatticeBackground field methodFOS: Physical sciencesPinch techniqueRenormalizationTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeGauge symmetriesQuantum mechanicsGauge theory3-gluon vertexPhysicsBackground field methodDynamical symmetry breakingGlueballsPhysicsHigh Energy Physics - Lattice (hep-lat)Mass generationInvarianceHigh Energy Physics::PhenomenologyPropagatorQCDGluonMassless particleHigh Energy Physics - PhenomenologyFísica nuclear
researchProduct

QCD effective charge from the three-gluon vertex of the background-field method

2013

In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form facto…

High Energy Physics - TheoryPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsDynamical symmetry breakingBackground field methodHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFOS: Physical sciencesVertex functionPropagatorEffective nuclear chargeVertex (geometry)GluonHigh Energy Physics - PhenomenologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsQuantum ChromodynamicsWave functionPhysical Review D
researchProduct

Effective charge from lattice QCD

2020

Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD's renormalisation-group-invariant process-independent effective charge, $\hat\alpha(k^2)$. Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, this coupling saturates at infrared momenta: $\hat\alpha(0)/\pi=0.97(4)$. Amongst other things: $\hat\alpha(k^2)$ is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton di…

dimension: 4Nuclear TheoryHigh Energy Physics::Latticesum rule: Bjorkenparton: distribution function01 natural sciencespi: massHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationQuantum chromodynamicsPhysicsHigh Energy Physics - Lattice (hep-lat)scalingdynamical symmetry breakinglattice field theoryLattice QCDDyson-Schwinger equationsEmergence of massHigh Energy Physics - Phenomenologyinfraredfermion: domain wallSum rule in quantum mechanicsRunning couplingNuclear and High Energy PhysicsParticle physicsLattice field theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Lattice field theoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Theory (nucl-th)High Energy Physics - Lattice0103 physical sciencesquantum chromodynamicsQuantum field theory010306 general physicsCoupling constant010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics::Phenomenologycoupling constantAstronomy and AstrophysicsgluonGluonDistribution functionevolution equation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentQuantum chromodynamicsConfinement
researchProduct